
# Comparison between NEW and OLD syllabuses

In the New Biology syllabus, some topics are newly added and some are removed. Moreover, the syllabus is divided into two parts: **core** and **extension**. Some difficult topics are grouped under the extension part and they will only be asked in Section B of both Papers 1 and 2.

#### (a) Topics added to the syllabus

| Sections                           | Topics added                                                                                                                                                                                                                                                                                                                                                                         |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The Cell                           | <ul><li>Discovery of cells</li><li>Functions of mitochondrion</li></ul>                                                                                                                                                                                                                                                                                                              |  |
| Organisms and Their<br>Environment | <ul> <li>Classification of organisms into five kingdoms</li> <li>Virus as a non-cellular entity</li> <li>Concept of sustainable development</li> </ul>                                                                                                                                                                                                                               |  |
| Energetics                         |                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Obtaining Essentials for Life      | <ul> <li>Using data logger to study: (P) <ul> <li>the effect of light on gas exchange; and</li> <li>the change in breathing rate during exercise.</li> </ul> </li> <li>Test for glucose using Clinistix paper (P)</li> <li>Test for protein using Albustix paper (P)</li> <li>Health problems resulting from improper diet</li> <li>Peridontal disease and its prevention</li> </ul> |  |
| Coordination and Response          | <ul> <li>General effects of glucagon</li> <li>Similarities and differences between hormonal and nervous coordination</li> <li>Feedback mechanism in homeostasis</li> </ul>                                                                                                                                                                                                           |  |
| Regulation and Defence             | Regulatory role of glucagon in blood glucose level                                                                                                                                                                                                                                                                                                                                   |  |
| Reproduction and Growth            | <ul><li>Structure of ovum</li><li>Formation of identical twins and fraternal twins</li><li>Advantages of breast-feeding</li></ul>                                                                                                                                                                                                                                                    |  |
| Genetics and Evolution             | <ul> <li>Down syndrome, colour blindness and G6PD deficiency</li> <li>Human Genome Project</li> <li>Genetic engineering</li> <li>Evolution</li> </ul>                                                                                                                                                                                                                                |  |





# 3.1 Photosynthesis

Learning Focus -

- Explore the significance of photosynthesis in converting light energy to chemical energy in plants.
- Understand the requirements for photosynthesis, including light, carbon dioxide, water and chlorophyll.
- Learn the photosynthetic process involving the splitting of water and the formation of carbohydrate.
- Explore the fate of photosynthetic products in plants. Extension
- Explore the effects of environmental factors on the rate of photosynthesis. Extension
- Understand the relationship between the structural features of leaf and its adaptation as a photosynthetic organ.
- Design and perform investigations to:
  - detect the photosynthetic product;
  - study the requirements for photosynthesis; and
  - study the effects of environmental factors on the rate of photosynthesis. Extension
- Green plants are photosynthetic autotrophs (自養生物) which use light energy to make complex food from simple inorganic substances.
- Not all autotrophs use light energy to produce food.
- Some autotrophic bacteria can obtain chemical energy through oxidation.

# A. Definition of photosynthesis

- Photosynthesis (光合作用) is an anabolic process in which green plants produce complex organic food (e.g. glucose) from simple inorganic substance.
- Plants use chlorophyll (葉緑素) to absorb solar energy.
- Oxygen is released as a by-product.
- Word equation for photosynthesis:

#### Carbon dioxide + Water <u>Sunlight</u> Carbohydrate + Oxygen

• Chemical equation for photosynthesis (for reference only):

$$6CO_2 + 6H_2O \xrightarrow{Sunlight} C_6H_{12}O_6 + 6O_2$$

E Reminder

All plants containing chlorophyll can carry out photosynthesis. But not all of them may be green in colour.



- Only word equation is required in the HKCEE.
- Oxygen released in photosynthesis comes from water rather than carbon dioxide.



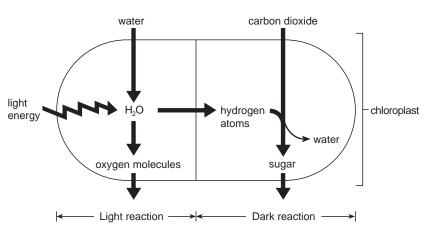
## **B.** Requirements for photosynthesis

There are four requirements for photosynthesis, they are light, carbon dioxide, chlorophyll and water.

- Light is a source of energy to drive photosynthesis. It usually comes from the Sun.
- Carbon dioxide is a raw material of photosynthesis. It comes from the surrounding air and respiration of plant cells.
- Chlorophyll is a green pigment which traps light energy and converts it to chemical energy.
- Water is a raw material of photosynthesis. It comes from soil, moving up the stem and into the leaf.

# C. Processes of photosynthesis

### (a) Light reaction (光反應) (photolysis of water)


- Light and chlorophyll are required at this stage.
- The chlorophyll traps the light energy.
- The energy is used to split water molecules into hydrogen atoms and oxygen molecules.

Water <u>Light energy</u> Chlorophyll Hydrogen atoms + Oxygen (transferred to dark reaction)

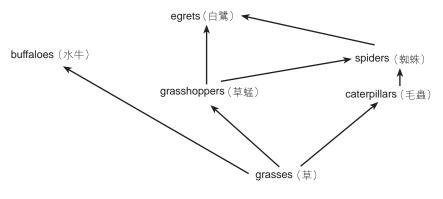
#### (b) Dark reaction (暗反應)

- Light and chlorophyll are not required at this stage.
- The hydrogen atoms produced in light reaction combine with carbon dioxide to form carbohydrates.

#### Carbon dioxide+Hydrogen atom -----> Carbohydrate (sugar) + Water (from light reaction)

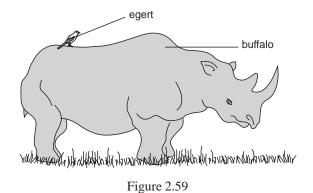


Reminder


During light reaction, hydrogen atoms, instead of hydrogen gas, are produced.



Dark reaction takes place just after the light reaction.


## Guided Example 6

The diagram below shows the feeding relationship between certain organisms which are found in grassland:





- (a) Name the relationship between
  - (i) grasshoppers and caterpillars:
  - (ii) caterpillars and spiders; and
  - (iii) egrets and spiders.
- (b) The diagram below shows an association of the egret and buffalo:





Two species living in the same area may have more than one type of interaction.

E Reminder

The buffalo neither benefits nor is harmed in this assocation.

The egret feeds on the insects hidden in the grass which are disturbed by the buffalo when it move around the grass. Name the association between the egret and the buffalo.

#### Suggested Answer

- (a) (i) Competition
  - (ii) Predation
  - (iii) Predation and competition
- (b) Commensalism



- 1. Boil a glucose solution and cool it to room temperature.
- 2. Mix the glucose solution with the yeast in a sterilized flask.
- 3. Pour a layer of liquid paraffin oil on the top of the solution.
- 4. Prepare a control by setting the same apparatus but using killed yeast.
- 5. Leave the set-up for a few hours and record the results.
- Result

| Bicarbonate indicator                        |                                                                 | Temperature                  | Smell of alcohol |  |
|----------------------------------------------|-----------------------------------------------------------------|------------------------------|------------------|--|
| Experimental set<br>(with living yeast)      | Turns from orange<br>to yellow (Carbon<br>dioxide is released.) | Rises<br>(Heat is released.) | Yes              |  |
| Control setRemains orange(with killed yeast) |                                                                 | No change                    | No               |  |

Table 3.9

- Explanation
  - Yeast cells carry out anaerobic respiration (fermentation) in the presence of glucose.
  - Carbon dioxide, heat energy and alcohol are produced during the process.

| - Glossary CCC               |          | eccecce                  |      |
|------------------------------|----------|--------------------------|------|
| aerobic respiration          | 需氧呼吸     | lactic acid fermentation | 乳酸發酵 |
| air space                    | 氣室       | light reaction           | 光反應  |
| alcoholic fermentation       | 酒精發酵     | limiting factor          | 限制因素 |
| anaerobic respiration        | 缺氧呼吸     | lower epidermis          | 下表皮  |
| ATP                          | 三磷酸腺苷    | mesophyll                | 葉肉   |
| autotroph                    | 自養生物     | mitochondrion            | 粒腺體  |
| breathing                    | 呼吸       | oxygen debt              | 氧債   |
| chlorophyll                  | 葉緑素      | palisade tissue          | 柵狀組織 |
| chloroplast                  | 葉綠體      | phloem                   | 韌皮部  |
| cuticle                      | 角質層      | photosynthesis           | 光合作用 |
| cytoplasm                    | 細胞質      | respiration              | 呼吸作用 |
| dark reaction                | 暗反應      | sodium hydrogencarbonate | 碳酸氫鈉 |
| destarching                  | 脱澱粉      | spongy tissue            | 海綿組織 |
| differential air thermometer | 差示空氣温度計  | stoma / stomata          | 氣孔   |
| epidermis                    | 表皮       | upper epidermis          | 上表皮  |
| ethanol                      | 乙醇       | variegated leaf          | 斑葉   |
| guard cell                   | 保衛細胞     | vein                     | 葉脈   |
| hydrogencarbonate indicator  | ·碳酸氫鹽指示劑 | xylem                    | 木質部  |
| lactic acid                  | 乳酸       | yeast                    | 酵母菌  |

E Reminder

Sterilization kills other microorganisms which, if do exist, may affect the normal growth of yeast cells.

# **Examination Question Analysis**

| Topics                                              | Structured Questions (Year)                                          | Multiple-choice Questions (Year)                                 |
|-----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|
| Significance of photosynthesis                      |                                                                      | 93(17)                                                           |
| Requirements for photosynthesis                     | 97(4a)                                                               | 96(10)                                                           |
| Processes of photosynthesis                         | 95(4aiii)                                                            | 93(23), 94(7), 01(13), 02(05),<br>03(7, 8), 04(8, 9), 05(10)     |
| Factors affecting photosynthesis                    | 01(2bi, ii), 04(2b), 06(8a)                                          | 93(16)                                                           |
| Utilization of photosynthetic<br>products Extension | 04(4ciii)                                                            | 93(15), 94(8), 98(12), 02(21)                                    |
| Leaf structure                                      | 94(2bi), 95(4ai, ii), 98(2aii),<br>00(1b), 02(2bi, ii), 04(4ci, iii) | 95(10), 97(17, 18), 03(27, 28)                                   |
| Significance of respiration                         |                                                                      |                                                                  |
| Aerobic respiration                                 | 91(4a), 96(3c), 98(3c), 99(4b),<br>01(2biii)                         | 96(17, 18), 00(04), 05(15)                                       |
| Alcoholic fermentation                              | 94(1b)                                                               | 96(22, 23), 98(17, 18, 19), 00(05),<br>02(07), 03(24, 25), 06(9) |
| Lactic acid fermentation                            | 04(4a)                                                               | 00(4), 01(6), 02(07, 32, 33),<br>03(9), 06(09)                   |
| Importance of anaerobic respiration Extension       | 97(4bi, ii, iii)                                                     | 00(05)                                                           |
| Comparison of aerobic and anaerobic respiration     |                                                                      |                                                                  |
| Experiments on heat production                      |                                                                      | 93(24, 25)                                                       |
| Experiments on CO <sub>2</sub> production           | 98(3c)                                                               | 06(21, 22)                                                       |
| Experiments on O <sub>2</sub> consumption           | 91(4a), 96(3c), 99(4b), 01(2biii)                                    | 05(6, 7), 06(19, 20)                                             |





# Paper I Structured Questions

#### Section A

1. The following paragraph describes the two main phases of photosynthesis. Complete the paragraph with suitable words selected from the list below:

| air            | chloroplast       | water           |
|----------------|-------------------|-----------------|
| chlorophyll    | nitrogen fixation | carbon fixation |
| oxygen         | nitrogen          | hydrogen        |
| carbon dioxide | enzyme            | nitrate         |
| light reaction | respiration       |                 |

| Photosynthesis has two main phases. During the light-dependent     |  |  |  |  |
|--------------------------------------------------------------------|--|--|--|--|
| stage, light energy is trapped by (a) molecules. Some              |  |  |  |  |
| of the energy is used to split water molecules into                |  |  |  |  |
| (b) atoms and (c) gas. The                                         |  |  |  |  |
| (d) is used in the light-independent stage as a                    |  |  |  |  |
| reducing power. In the light-independent stage, the reducing power |  |  |  |  |
| produced in light reaction combine with (e) to                     |  |  |  |  |
| form a simple sugar. This stage is also known as                   |  |  |  |  |
| (f)                                                                |  |  |  |  |

(6 marks) Total: 6 marks

|     | Suggested Answer |   |
|-----|------------------|---|
| (a) | chlorophyll      | 1 |
| (b) | hydrogen         | 1 |
| (C) | oxygen           | 1 |
| (d) | hydrogen         | 1 |
| (e) | carbon dioxide   | 1 |
| (f) | carbon fixation  | 1 |

New Certificate Biology: Complete Notes and Exam Practices 1 (Revised Edition)

#### **Paper II Multiple-choice Questions**

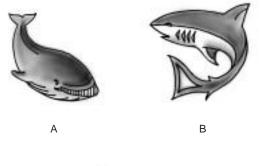
#### Section A

1. The following table lists some features of three animals X, Y and Z:

|          | Animals |   |   |  |  |
|----------|---------|---|---|--|--|
|          | X Y Z   |   |   |  |  |
| Backbone | 1       | × | 1 |  |  |
| Scales   | ×       | × | 1 |  |  |
| Lungs    | 1       | × | ✓ |  |  |

Key: ✓ = present

X = absent


Table 2.21

The three animals are probably

|           | Х        | Y          | Ζ          | Guidelines                         |
|-----------|----------|------------|------------|------------------------------------|
| Α.        | rabbit   | jelly fish | sparrow    | Both X and Z are vertebrates while |
| Β.        | frog     | jelly fish | salamander | Y is an invertebrate. Note that a  |
| C.        | frog     | goldfish   | snake      | salamander is an amphibian and     |
| D.        | starfish | goldfish   | turtle     | its body is not covered with       |
| Answer: A |          |            |            | scales.                            |

``

2. Which of the following pairs of animals are correctly classified?





D







С

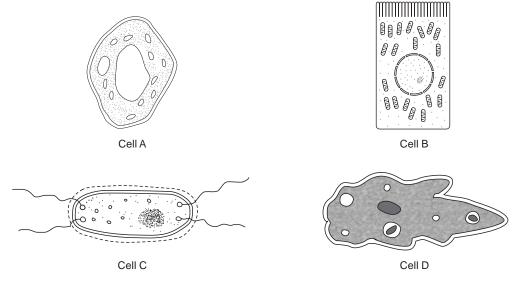
F

Figure 2.75

New Certificate Biology: Complete Notes and Exam Practices 1 (Revised Edition)



# Paper I Structured Questions


#### Section A

1. The following paragraph describes the energy flow within an ecosystem. Complete the paragraph with suitable words.

The relationship between specific species of organisms can be shown in sequence according to their feeding habits. Such a sequence is called a (a) \_\_\_\_\_\_\_. In such feeding sequence, each stage is known as a feeding or (b) \_\_\_\_\_\_\_ level. There are rarely more than five levels in each feeding sequence because there is not enough energy to support more. Transfer of energy is inefficient because energy is (c) \_\_\_\_\_\_\_ at each feeding level due to (d) \_\_\_\_\_\_\_, excretion and egestion. Pyramids of numbers represent the (e) \_\_\_\_\_\_\_ at each feeding level. Their main disadvantage is that they can be (f) \_\_\_\_\_\_ and fail to give information of energy change through the feeding sequence.

(6 marks) Total: 6 marks

2. The diagram below shows four types of cells. Cells A and B are taken from two different multicellular organisms while both cells C and D are unicellular organisms.





(a) Name the kingdom to each organism belongs.

(4 marks)

(b) According to the diagram above, state *one* feature of each cell which is characteristic of the kingdom.

(4 marks) Total: 8 marks