Comparison between NEW and OLD syllabuses

The NEW Additional M athematics syllabus is extracted from the old one. No new topics are added, but some topics are cut or trimmed. All the contents about 'Complex Numbers' as well as 'Conic Sections', such as ellipse, parabola and hyperbola had been removed from the syllabus. The changes of the topics of the new syllabus are listed in the following table:

Chapters	Topics of the syllabus	Topics removed
1. Quadratic Equations, Quadratic Functions and Absolute Values	- Quadratic functions and quadratic equations - Discriminant and nature of roots - Use of the absolute value sign	- Use of absolute value sign in relation to inequalities is not required.
2. Inequalities	- Quadratic inequalities in one variable	- Inequalities of the form $\frac{a x+b}{c x+d} \geq k$ are not required
3. Mathematical Induction	- Mathematical induction and its simple applications	-
4. Binomial Theorem	- The binomial theorem for positive integral indices	-
5. Trigonometry	- The six trigonometric functions of angles of any magnitude and their graphs - Formulae for $\sin (A \pm B), \cos (A \pm B)$ and $\tan (A \pm B)$, sum and product formulae - General solution of simple trigonometric equations	- Students are not required to prove these formulae. Their applications to multiple and half angles are expected but students are not required to memorize 'triple angle formulae' and 'half angle formulae'
6. Solution of Triangles and its Applications	- Trigonometric problems in two- and three-dimensions	-

1 Quadratic Equations, Quadratic Functions and Absolute Values

Quadratic Equations, Quadratic

Methods of solving quadratic equations

- Factorization

If $(m x+n)(p x+q)=0$, then $x=-\frac{n}{m}$ or $-\frac{q}{p}$.

- Quadratic formula

The roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$
are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Nature of the roots of quadratic equations

Discriminant $\Delta=b^{2}-4 a c$ determines the nature of roots of the quadratic equation $a x^{2}+b x+c=0 \cdots \cdots(*)(a \neq 0)$

- $\Delta>0,(*)$ has 2 unequal real roots
- $\Delta=0,(*)$ has 2 equal real roots
- $\Delta<0,(*)$ has no real roots

Sum and product of roots

- Let α and β be the roots of $a x^{2}+b x+c=0 \quad(a \neq 0)$, we have

$$
\alpha+\beta=-\frac{b}{a} \text { and } \alpha \beta=\frac{c}{a}
$$

Functions and Absolute Values

Shape of $y=a x^{2}+b x+c(a \neq 0)$

$y=a x^{2}+b x+c$
$=a\left[x-\left(-\frac{b}{2 a}\right)\right]^{2}+\frac{4 a c-b^{2}}{4 a}$
(a) $a>0$

- Curve opens upwards
- y attains minimum at $x=-\frac{b}{2 a}$
- Line of symmetry is $x=-\frac{b}{2 a}$
(b) $a<0$
- Curve opens downwards
- y attains maximum at $x=-\frac{b}{2 a}$
- Line of symmetry is $x=-\frac{b}{2 a}$

Absolute values

Definition of absolute value
$|x|=\left\{\begin{array}{cl}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{array}\right.$

Properties of absolute value
(a) $|x| \leq 0$
(b) $|x|=|-x|$
(c) $|x y|=|x| y \mid$
(d) $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$ where $y \neq 0$
(e) $\left|x^{2}\right|=x^{2}=|x|^{2}$
(f) If $a \geq 0$, then $|x|=a$ means $x=a$ or $x=-a$ If $a<0$, then $|x|=a$ has no solutions
(g) $|x|=|y|$ means $x=y$ or $x=-y$

Graph of functions involving absolute value

- $y=|x-1|$

1．1 Q uadratic equations（二次方程）

Learning Focus

－Study the methods of solving the quadratic equation $a x^{2}+b x+c=0$ with $a \neq 0$ ．
－Determine the nature of roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ by discriminant．
－Study and apply the formulae of the sum and product of roots of the quadratic equation．
－Study the methods of the formation of quadratic equations．

A．Methods of solving quadratic equations

（a）Factorization（因式分解）

－Try to reduce the quadratic equation $a x^{2}+b x+c=0$ with $a \neq 0$ to form $(m x+n)(p x+q)=0$ ．
Hence，the roots are $x=-\frac{n}{m}$ and $-\frac{q}{p}$ ．

（b）Quadratic formula（二次公式）

－The roots of the quadratic equation $a x^{2}+b x+c=0$ with $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Guided Example 1

Solve $\left(x^{2}+3 x\right)^{2}-3\left(x^{2}+3 x\right)-4=0$ ．

Suggested Solution

$$
\begin{align*}
& \left(x^{2}+3 x\right)^{2}-3\left(x^{2}+3 x\right)-4=0 \\
& \text { Let } y=x^{2}+3 x \tag{1}\\
& \therefore \quad y^{2}-3 y-4=0 \\
& (y-4)(y+1)=0 \\
& y=4 \text { or } y=-1 \tag{2}
\end{align*}
$$

Put（2）into（1）：

$$
\begin{array}{rlrlrl}
x^{2}+3 x & =4 & \text { or } & x^{2}+3 x & =-1 \\
x^{2}+3 x-4 & =0 & \text { or } & x^{2}+3 x+1 & =0 \\
(x-1)(x+4) & =0 & \text { or } & x & =\frac{-3 \pm \sqrt{3^{2}-4(1)(1)}}{2(1)} \\
x=1 \text { or }-4 \text { or } & \frac{-3 \pm \sqrt{5}}{2} &
\end{array}
$$

A．Family of parallel straight lines（平行綫族）

－If m is a constant，then the lines $L: y=m x+k$ represents a family of parallel straight lines with slope m as k varies．

Figure 7.23
－If A and B are given constants，and k is real，then the lines $L: A x+B y+k=0$ represents a family of parallel straight lines with slope equal to $-\frac{A}{B}$ as k varies．

B．Family of straight lines passing through the point of intersection of two given straight lines

－Given two straight lines $L_{1}: A_{1} x+B_{1} y+C_{1}=0$ and $L_{2}: A_{2} x+B_{2} y+C_{2}=0$ intersect at a point P ．The line $L:\left(A_{1} x+B_{1} y+C_{1}\right)+k\left(A_{2} x+B_{2} y+C_{2}\right)=0$ ， where k is real，represents a family of straight lines passing through the point P as k varies．

Figure 7.24
－$\quad L$ represents all straight lines passing through P except L_{2} ．
－By similar argument，the lines $L^{\prime}: k\left(A_{1} x+B_{1} y+C_{1}\right)+\left(A_{2} x+B_{2} y+C_{2}\right)=0$ represents a family of straight lines passing through the point P as k varies．L^{\prime} represents all straight lines passing through P except L_{1} ．

As k varies，the straight line will have different positions but their slope are the same．

Reminder
By varying the value of k ， the straight line obtained will have different slopes but will all pass through the point P ．

Guided Example 14

Find the equation of the two circles, both have centre at $(8,5)$ and touch the circle C: $x^{2}+y^{2}-2 y-4=0$.

Suggested Solution

Centre of $C=(0,1)$
Radius of $C=\sqrt{(0)^{2}+1^{2}-(-4)}=\sqrt{5}$
Hence, graphically we have

Figure 8.26

C and C_{1} are connected externally, i.e.

Figure 8.27
i.e. $x^{2}+y^{2}-16 x-10 y+44=0$

Similarly, let r_{2} be the radius of circle C_{2}.
$r_{2}-\sqrt{5}=\operatorname{Distance}$ between $(0,1)$ and $(8,5)$
$\therefore \quad r_{2}-\sqrt{5}=\sqrt{(0-8)^{2}+(1-5)^{2}}$

$$
=4 \sqrt{5}
$$

$\therefore \quad r_{2}=5 \sqrt{5}$
Equation of C_{2} is $(x-8)^{2}+(y-5)^{2}=(5 \sqrt{5})^{2}$
i.e. $\quad \underline{\underline{x^{2}+y^{2}-16 x-10 y-36=0}}$

C and C_{2} are connected internally, i.e.

Figure 8.28

G lossary

angle between two planes	兩平面的夾角
angle of depression	俯角
angle of elevation	仰角
compass bearing	羅盤方位角
Cosine Law	餘弦公式

inclination
line of greatest slope
projection
Sine Law
true bearing

傾角
 最大斜率的直綫投影
 正弦公式
 真方位角

Important Formulae

－The Sine Law

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

－The Cosine Law

$$
\begin{gathered}
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
b^{2}=a^{2}+c^{2}-2 a c \cos B \\
c^{2}=a^{2}+b^{2}-2 a b \cos C \\
\text { or } \quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{gathered}
$$

Examination Question Analysis

Topics	Section A	Section B
Two－dimensional and three－ dimensional problems	$93(\mathrm{II}-7), 95(\mathrm{II}-7)$	$94(\mathrm{II}-12), 96(\mathrm{II}-12), 97(\mathrm{II}-12)$,
		$98(\mathrm{II}-13), 99(\mathrm{II}-11), 00(\mathrm{II}-12)$,
		$01(15), 02(17), 03(18)$

Demonstration

Section A

1. In Figure 6.29, $\triangle A B C$ is an isosceles triangle. $C A=C B, A B=5$, $\angle A C D=2 \theta$ and $\angle B C D=\theta$.
(a) Let $B D=x$. Using the Sine Law or otherwise, prove that $x=\frac{5}{1+2 \cos \theta}$
(b) As θ varies, prove that $\frac{5}{3}<x<\frac{5}{2}$. \qquad

Figure 6.29
Guidelines
Note that $0^{\circ}<\angle A C B<180^{\circ}$.
$\therefore 0^{\circ}<2 \theta+\theta<180^{\circ}$.
(a) Consider $\triangle A D C$,

$$
\begin{equation*}
\frac{5-x}{\sin 2 \theta}=\frac{C A}{\sin \left(180^{\circ}-\beta\right)} \tag{1}
\end{equation*}
$$

Consider $\triangle B D C$,

$$
\begin{equation*}
\frac{x}{\sin \theta}=\frac{C B}{\sin \beta} \tag{2}
\end{equation*}
$$

Since $C A=C B$ and $\sin \left(180^{\circ}-\beta\right)=\sin \beta$,
we have $\frac{C A}{\sin \left(180^{\circ}-\beta\right)}=\frac{C B}{\sin \beta}$

Figure 6.30

Hence $\quad \frac{5-x}{\sin 2 \theta}=\frac{x}{\sin \theta}$

$$
\frac{5-x}{2 \sin \theta \cos \theta}=\frac{x}{\sin \theta}
$$

$$
5-x=2 x \cos \theta
$$

$$
5=x(1+2 \cos \theta)
$$

$$
x=\frac{5}{1+2 \cos \theta}
$$

(b) Since
\square

$$
\begin{aligned}
& 0^{\circ}<\angle A C B<180^{\circ} \\
& 0^{\circ}<3 \theta<180^{\circ} \\
& 0^{\circ}<\theta<60^{\circ} \\
& \cos 0^{\circ}>\cos \theta>\cos 60^{\circ} \\
& 1>\quad \cos \theta>\frac{1}{2} \\
& 3>1+2 \cos \theta>2 \\
& \frac{5}{3}<\frac{5}{1+2 \cos \theta}<\frac{5}{2} \\
& \frac{5}{3}<\quad x \quad<\frac{5}{2}
\end{aligned}
$$

Practice

Unless otherwise specified, each numerical answer should be in exact value or correct to 3 significant figures.

Section A

1. In $\triangle A B C$ (see Figure 6.48), $D E / / B C . D B=6 \mathrm{~cm}, E C=7 \mathrm{~cm}$ and $\angle A B C=72^{\circ}$. Find $\angle B A C$.

Figure 6.48
2. In quadrilateral $A B C D$ (see Figure 6.49), $A B=6, B C=5$, $C D=8, \angle A B C=120^{\circ}$ and $\angle B C D=100^{\circ}$. Find $A D$. Hint

Figure 6.49
3. Solve $\triangle A B C$ where $b=7, c=11$ and $\angle B=34^{\circ}$
4. In Figure $6.50, D$ is a point on $B C$ such that $A D$ bisects $\angle B A C$.
(a) By considering the areas of $\triangle A B D, \triangle A D C$ and $\triangle A B C$, or otherwise, prove that $\cos \theta=\frac{a(b+c)}{2 b c}$.
(b) Find the value of θ, correct to the nearest degree if $a=2$,

Figure 6.50 $b=6$ and $c=3$.
5. In $\triangle A B C$, if $\sin A: \sin B: \sin C=2: 5: 6$. Hint 2
(a) Find $\cos A, \cos B$ and $\cos C$.
(b) Hence, find $\sin 2 A: \sin 2 B: \sin 2 C$.

Index

A	
absolute value 絕對值	13
angle between two planes 兩平面的夾角	129
angle of depression 俯角	129
angle of elevation 仰角	129
ascending powers of $x x$ 的升幂	76
axis of symmetry 對稱軸	10
B	
binomial theorem 二項式定理	75
C	
centre 圓心	184
centroid 形心	154
coefficient 係數	74
common chord 公共弦	199
common tangent 公切綫	199
compass bearing 羅盤方位角	129
compound angle formulae 複角公式	97
compound linear inequality 複合不等式	33
cosecant 餘割	93
cosine 餘弦	93
Cosine Law 餘弦公式	124
cotangent 餘切	93
D	
descending powers of $x x$ 的降冪	80
discriminant 判別式	5
divisibility 整除性	58
double angle formulae 二倍角公式	98
E	
equal root 等根	6
equation of straight lines 直綫方程	159
equation of the locus 軌跡方程	202
expansion 展式	72
F	
factorial 階乘	74
factorization 因式分解	4

absolute value 絕對值13129129129
family of circles 圓族 196
family of concentric circles 同心圓族 196
family of parallel straight lines 平行綫族 165
family of straight lines 直綫族 164

G

general form 一般式／通式 160，184
general solution 通解 103

1
inclination 傾角 129,158
intercept form 截距式 160
internal point of division 內分點 154

L

line of greatest slope 最大斜率的直綫 129
linear inequality 一次不等式 32
locus 軌跡 202

M

mathematical induction 數學歸納法 55
maximum value 最大值 10
method of completing the square 配方法 35
minimum value 最小值 10

N

nature of root 根之性質 5
normal form 法綫式 161

P
parameter 參數 202
parametric equation 參數方程 202
Pascal＇s Triangle 帕斯卡三角形 72
point－slope form 點斜式 159
product of roots 兩根之積 7
product－to－sum formulae 積化和差公式 101
projection 投影 128
proposition 命題 55

1 Quadratic Equations，Quadratic Functions and Absolute Values

Section A

1．$\left(x^{2}-x\right)^{2}+2\left(x^{2}-x\right)-3=0$
Let $y=x^{2}-x$
$\therefore \quad y^{2}+2 y-3=0$
$(y+3)(y-1)=0$
$y=-3 \quad$ or
$x^{2}-x=-3 \quad$ or $\quad x^{2}-x=1$
$x^{2}-x+3=0 \quad$ or
$x^{2}-x-1=0$
$\Delta=(-1)^{2}-4(1)(3)$
$=-11$
<0
$x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}$
$\therefore \quad$ No real roots．
$=\underline{\underline{\frac{1 \pm \sqrt{5}}{2}}}$

2．$\sqrt{x+1}+\sqrt{3 x-8}=3$

$$
\begin{aligned}
\sqrt{3 x-8} & =3-\sqrt{x+1} \\
(\sqrt{3 x-8})^{2} & =(3-\sqrt{x+1})^{2} \\
3 x-8 & =9-6 \sqrt{x+1}+x+1 \\
2 x-18 & =-6 \sqrt{x+1} \\
x-9 & =-3 \sqrt{x+1} \\
(x-9)^{2} & =(-3 \sqrt{x+1})^{2} \\
x^{2}-18 x+81 & =9(x+1) \\
x^{2}-27 x+72 & =0 \\
(x-3)(x-24) & =0 \\
x & =3 \text { or } 24 \text { (rejected) }
\end{aligned}
$$

Reminder

In solving irrational equations，students should check the solutions by putting them back to the equation．

3．（a）$y(y-1)-2$

$$
\begin{aligned}
& y^{2}-y-2=0 \\
& (y-2)(y+1)=0 \\
& y=\underline{\underline{\text { or }-1}}
\end{aligned}
$$

（b）$x^{2}+x-1=\frac{2}{x^{2}+x}$
Let $\quad y=x^{2}+x$

$$
\begin{aligned}
& y-1=\frac{2}{y} \\
& y(y-1)=2 \\
& y=2 \quad \text { or } \quad y=-1(\text { by (a)) } \\
& \therefore \quad x^{2}+x=2 \quad \text { or } \quad x^{2}+x=-1 \\
& x^{2}+x-2=0 \quad x^{2}+x+1=0 \\
& (x+2)(x-1)=0 \\
& x=-2 \text { or } 1 \\
& \begin{aligned}
\Delta & =1^{2}-4(1)(1) \text { 解 } \\
& =-3
\end{aligned} \\
& \text { < } 0
\end{aligned}
$$

$\therefore \quad$ No real roots．

躍 Reminder
 Use Δ to check the nature of roots．

4．（a）$\sqrt{x}+\frac{1}{\sqrt{x}}=\frac{5}{2}$

$$
\begin{aligned}
\frac{x+1}{\sqrt{x}} & =\frac{5}{2} \\
2(x+1) & =5 \sqrt{x} \\
{[2(x+1)]^{2} } & =(5 \sqrt{x})^{2} \\
4 x^{2}+8 x+4 & =25 x \\
4 x^{2}-17 x+4 & =0 \\
(4 x-1)(x-4) & =0 \\
x & =\frac{1}{4} \quad \text { or } \quad 4
\end{aligned}
$$

（b）$\sqrt{\frac{x+2}{x-1}}+\sqrt{\frac{x-1}{x+2}}=\frac{5}{2}$

$$
\text { Let } y=\frac{x+2}{x-1}
$$

$$
\sqrt{y}+\frac{1}{\sqrt{y}}=\frac{5}{2}
$$

By（a），$y=\frac{1}{4} \quad$ or 4

$$
\begin{array}{rlrlrl}
\frac{x+2}{x-1} & =\frac{1}{4} & \text { or } & & \frac{x+2}{x-1} & =4 \\
4 x+8 & =x-1 & \text { or } & x+2 & =4 x-4 \\
3 x & =-9 & & 6 & =3 x \\
x & =\underline{-3} & & x & =\underline{2}
\end{array}
$$

