Exam Strategies

1. Remember to write down your school code, class and class number at the bottom of the first page of the exam paper.
2. There are about 50 questions in an exam paper and the time allowed is 65 minutes. You should therefore spend about 1 minute for each question and allow 15 minutes for final checking.
3. Do your rough work on the rough work sheet.
4. Show your work clearly and neatly.
5. Do not be struck in any one of the questions. Skip it and go on to another one.
6. When solving application problems, read the questions carefully.
7. When you are asked to "Show your working", you should shows formulas and steps rather than just writing down the answers. In case you do not get the correct answer, you can get the marks for the correct methods used. Besides, make sure you have given a unit, if any, to each answer.
Example: Mr. Lee deposits 15000 dollars to a bank. If the annual interest rate is 0.3% and the interest is calculated once a year, find the amount he will get after four years. (Correct the answer to the nearest dollar.)
(Show your working)
Good presentation:

	Amount
$=$	$15000 \times(1+0.3 \%)^{4}$
$=$	15181 dollars

$$
\begin{aligned}
& \quad 15000 \times(1+0.3 \%)^{4} \\
& =15181 \text { dollars } \\
& \text { The amount is } 15181 \text { dollars. }
\end{aligned}
$$

Poor presentation resulting in mark deduction:

$$
\text { The amount is } 15181 \text { dollars. }
$$

$$
\begin{array}{l|l}
\text { Or } & 15000 \times(1+0.3 \%)^{4} \\
= & 15181 \text { dollars }
\end{array}
$$

9. Although the latest exemplars of Key Stage 3 do not involve filling in mathematical terms, students should still keep them in mind in order to avoid mark deduction.
10. There are lots of formulas throughout the curriculum from S. 1 to S.3. Students should remember and understand all of them, without ambiguity.
11. Explanations and reasons are necessary when dealing with a proof.

Example 15: The follow pair of triangles is similar. The reason is \qquad .

\checkmark Correct	\boldsymbol{x} Wrong
2 sides prop. and inc. \angle	SAS

4. Make clear the meanings of medians, perpendicular bisectors, altitudes and angle bisectors in a triangle.

Example 16: In $\triangle A B D, B C=C D . A C$ is a *median /perpendicular bisector /altitude of $\triangle A B D$. (*Circle the correct answer.)

\checkmark Correct	\times Wrong
median	perpendicular bisector

5. When applying the slope formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, beware that x_{1} and y_{1} correspond to one point, while x_{2} and y_{2} correspond to another point.
Example 17: Given that $A(12,6)$ and $B(3,9)$. Find the slope of $A B$.

\checkmark Correct	x Wrong
The slope of $A B=\frac{9-6}{3-12}$	The slope of $A B=\frac{9-6}{12-3}$
$=-\frac{1}{3}$	$=\frac{1}{3}$

TSA Mathematics Mock Exam Papers

Secondary 3

Mock Paper 1

Instructions:

1. There are 53 questions in this test.
2. Answer all questions.
3. The time allowed is 65 minutes.
4. Write your answers in this question booklet.
(a) Multiple choice questions:

Marker's Use Only

Dimension	Question	Score
Number and Algebra	$1-24$	131
Measure, Shape and Space	$25-48$	142
Data Handling	$25-53$	18
Total		

Mark your answers by putting a " \checkmark " in the " \bigcirc ", e.g.:

$$
2+3=
$$A. 4B. 5C. 6

D. 7
(b) Questions in which you are asked to "Show your working":

Write your mathematical expressions/equations, answers and statements/conclusions in the space provided. There is NO need to show your rough work.
(c) Other types of questions:

Answer as required in the space provided.
5. Do your rough work on the rough work sheet provided.
6. Write your Name, Class and Class Number in the spaces below.
\qquad Class \qquad Class No. \qquad
6. Mark -2.5 with a ' x ' on the following number line.

7. A watch shop is doing a promotion. Every goods are given a 10 percent off discount. Mary buys a watch with $\$ 288$, saving \qquad dollars.
 piece of pizza.

Manipulation of Directed Numbers (1)

- Tear off the cards and bind them with a rope to make handy revision cards.
- You can put the cards in the pockets and take out the cards any time for revision.
© Hong Kong Educational Publishing Company

Significant Figures

(a) Integers
(i) The ' 0 's after the last non-zero digit are not significant figures.
(ii) The '0's between two non-zero digits are significant figures.
(b) Decimals
(i) The '0's between the decimal point and the first nonzero digit are not significant figures.
(ii) The ' 0 's after the first non-zero digit are significant figures.
© Hong Kong Educational Publishing Company

Interest

(a) Simple interest
where $\$ \mathrm{~A}$ is the total amount, $\$ P$ is the principle, $\$ 1$ is the simple interest, $r \%$ is the annual interest rate and t is number of years for deposition.
(b) Compound interest
where $\$ \mathrm{~A}$ is the total amount, $\$ \mathrm{P}$ is the principle, $\$ 1$ is the simple interest, $\mathrm{r} \%$ is the annual interest rate, n is the number of periods per year and t is number of years for deposition.
©Hong Kong Educational Publishing Company

Linear Equations in Two Unknowns

If an equation involves two unknowns of power 1 , then the equation is called a linear equation in two unknowns.
Example:
$2 x+4 y=8$ is a linear equation with x and y as unknowns.
There are infinitely many solutions for linear equations in two unknowns. They can be expressed in ordered pairs.

Example:
$(0,2),(1,1.5),(2,1)$ are solutions of the equation $2 x+4 y=8$.
(a) Addition and subtraction
$(\pm a)+(+b)= \pm a+b$
$(\pm a)+(-b)= \pm a-b$
$(\pm a)-(+b)= \pm a-b$
$(\pm a)-(-b)= \pm a+b$

Example:

$$
\begin{array}{rlrl}
(+11)+(+3) & =11+3 & (+17)+(-5) & =7-5 \\
& =14 & =2 \\
(-8)+(+12) & =-8+12 & (-6)+(-9) & =-6-9 \\
& =4 & & =-15
\end{array}
$$

© Hong Kong Educational Publishing Company

Measurements and Errors

When we use tools to take measurements, the maximum error
$=$ (accuracy of the tool) $\times 0.5$.
For the actual value of the measurement,
upper limit = measured value + maximum error,
lower limit = measured value - maximum error,

$$
\text { relative error }=\frac{\text { maximum error }}{\text { measured value }} .
$$

© Hong Kong Educational Publishing Company

Polynomials

(a) Expansion and Factorization

(b) Cross method

Example: Factorize $6 x^{2}+23 x+21$.
$\frac{2 x}{2 x}+7$
$\therefore \quad 6 x^{2}+23 x+21=(2 x+3)(3 x+7)$
© Hong Kong Educational Publishing Company

Circumference and Area of Circles

(a) Circumference

$$
C=2 \pi r
$$

where C is the circumference and r is the radius.
(b) Area

$$
a=\pi r
$$

where a is the area of circle and r is the radius.

Scoring Guide
TSAmorths Mock Exam Popers

6

