Comparison between NEW and OLD syllabuses

The NEW Additional Mathematics syllabus is extracted from the old one. No new topics are added, but some topics are cut or trimmed. All the contents about 'Complex Numbers' as well as 'Conic Sections', such as ellipse, parabola and hyperbola had been removed from the syllabus. The changes of the topics of the new syllabus are listed in the following table:

Chapters	Topics of the syllabus	Topics removed
1. Quadratic Equations, Quadratic Functions and Absolute Values	- Quadratic functions and quadratic equations Discriminant and nature of roots - Use of the absolute value sign	- Use of absolute value sign in relation to inequalities is not required.
2. Inequalities	- Quadratic inequalities in one variable	- Inequalities of the form $\frac{a x+b}{c x+d} \geq k$ are not required
3. Mathematical Induction	- Mathematical induction and its simple applications	-
4. Binomial Theorem	- The binomial theorem for positive integral indices	-
5. Trigonometry	- The six trigonometric functions of angles of any magnitude and their graphs - Formulae for sin $(A \pm B)$, cos $(A \pm B)$ and tan($A \pm B)$ sum and product formulae	- Students are not required to prove these formulae. Their applications to multiple and half angles are expected but students are not required to memorize 'triple angle formulae' and 'half angle formulae'

9 vectors

(I) Concept Map

9．1 Vector operations

Learning Focus

－Understand the basic concepts of vectors．
－Study the method of addition and subtraction of vectors．
－Learn the method of scalar multiplication of vectors．
－Apply the rules of operations of vectors to solve problems．

A．Basic concepts of vectors

－A scalar（標量／純量）is a quantity possesses magnitude only． A vector（向量／矢量）is a quantity possesses both direction and magnitude．
－Geometrically，a vector $\overrightarrow{A B}$ is represented by a directed line segment from an initial point A to a terminal point B（see Figure 9．1）．The magnitude of $\overrightarrow{A B}$ is specified by the length of $A B$ ，and is denoted by $|\overrightarrow{A B}|$ ．The direction of $\overrightarrow{A B}$ is the direction from A to B ．
－Bold face letters can also be used to denote vectors．
For example：Let $\mathbf{v}=\overrightarrow{A B}$ ．In this case，$|\mathbf{v}|$ is the magnitude of \mathbf{v} ．
－Two vectors are equal if they have the same magnitude and direction．The two equal vectors need not have the same initial point and terminal point．
For example，in the parallelogram $A B C D$ shown in Figure 9．2，we have $A B=C D$ and $A B / / C D$ ，therefore $\overrightarrow{A B}=\overrightarrow{C D}$ ．
－A vector with zero magnitude is called a zero vector（零向量）and is denoted by $\mathbf{0}$ ．A zero vector has no specific direction．
For example， $\overrightarrow{A A}$ is a vector from the point A to A ．Since the length of $A A$ is zero， we have $\overrightarrow{A A}=\mathbf{0}$ ．

B．Addition of vectors

－Triangle law of addition（三角形加法律）： If $A B C$ is a triangle，then $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}$ ．

Figure 9.3

Figure 9.1

It is not suggested to write a bold face \mathbf{v} to represent vectors in doing exercises about vectors．Using the arrow \vec{v} is more appropriate．

Figure 9.2

Demonstration

Section A

1. $\overrightarrow{O A}=\mathrm{i}+3 \mathrm{j}, \overrightarrow{O B}=3 \mathrm{i}-\mathrm{j}, C$ is a point on $A B$ such that $\frac{A C}{C B}=r$.

Figure 9.31
(a) Express $\overrightarrow{O C}$ in terms of r.
(b) Find the value of r if $O C$ is perpendicular to $A B$. Hence find the coordinates of C.

Suggested Solution

Guidelines

Using the formula of point of division.

E
 Guidelines

Students should employ scalar product to prove two lines are perpendicular to each other in the problems of vectors.
(a) By point of division,

$$
\begin{aligned}
\overrightarrow{O C} & =\frac{(1)(\overrightarrow{O A})+r(\overrightarrow{O B})}{1+r} \\
& =\frac{(\mathrm{i}+3 \mathrm{j})+r(3 \mathrm{i}-\mathrm{j})}{1+r} \\
& =\underline{\underline{(1+3 r}} 1+r) \mathrm{i}+\left(\frac{3-r}{1+r}\right) \mathrm{j}
\end{aligned}
$$

(b) If $O C \perp A B$,

$$
\overrightarrow{O C} \cdot \overrightarrow{A B}=0
$$

$$
\begin{aligned}
& \therefore \quad\left[\left(\frac{1+3 r}{1+r}\right) \mathrm{i}+\left(\frac{3-r}{1+r}\right) \mathrm{j}\right] \cdot(\overrightarrow{O B}-\overrightarrow{O A})=0 \\
& \begin{array}{l}
\therefore \quad\left[\left(\frac{1+3 r}{1+r}\right) \mathrm{i}+\left(\frac{3-r}{1+r}\right) \mathrm{j}\right] \cdot(2 \mathrm{i}-4 \mathrm{j})=0 \\
\therefore \quad\left(\frac{1+3 r}{1+r}\right)(2)+\left(\frac{3-r}{1+r}\right)(-4)=0 \\
r=1 \\
\text { Hence } \overrightarrow{O C}=\left[\frac{1+3(1)}{1+1}\right] i+\left[\frac{3-(1)}{1+1}\right] \mathrm{j} \\
\quad=2 i+j
\end{array}
\end{aligned}
$$

$$
r=1
$$

\therefore The coordinates of C are $(2,1)$.

Practice

Section A

1. In $\triangle A B C, D$ is the mid-point of $B C$. Prove that $2 \overrightarrow{C A}+3 \overrightarrow{B C}+4 \overrightarrow{A B}=2 \overrightarrow{A D}$.
2. Given that a, b are non-zero, non-parallel vectors such that

$$
\frac{r s}{r+1} a+s b=\frac{2-s}{3} a+\frac{r}{r+1} b
$$

Find r and s. Hint1
3. (a) If $x i+y j$ is perpendicular to $5 i+12 j$, find the ratio of x to y.
(b) Hence, or otherwise, find the unit vector(s) perpendicular to $5 \mathrm{i}+12 \mathrm{j}$.
4. In the figure, $|\overrightarrow{A B}|=\sqrt{3},|\overrightarrow{A C}|=2$ and $\angle C A B=\frac{\pi}{6}$.
(a) Find $\overrightarrow{A B} \cdot \overrightarrow{A C}$.
(b) Find $|\overrightarrow{A B}+3 \overrightarrow{A C}|$ Hint 2

Figure 9.42
5. Given that $\overrightarrow{O P}=2 \mathrm{i}+4 \mathrm{j}, \overrightarrow{O Q}=\mathrm{i}+3 \mathrm{j}$ and $\overrightarrow{O R}=k \mathrm{i}+4 \mathrm{j}$.
(a) Find $\overrightarrow{Q P}$ and $\overrightarrow{Q R}$.
(b) If $\angle P Q R=120^{\circ}$, find the values of k.
6. $A B C D$ is a parallelogram. $D E=2 E C, B D$ is the diagonal and $B F=r D F$. Suppose $\overrightarrow{A B}=\mathrm{a}, \overrightarrow{A D}=\mathrm{d}, A F=s A E$.
(a) Find $\overrightarrow{A F}$ in terms of a, dand r.
(b) Find $\overrightarrow{A F}$ in terms of a, d, and s . Hint 3
(c) Hence, or otherwise, find the values of r and s.

Figure 9.43

Figure 9.44

10.1 Derivative from first principles

Learning Focus

- Understand the concepts of limits of functions.
- Learn the theorems and techniques of finding limits of functions.
- Learn how to find the slope of a function.
- Understand the definition of the derivative of a function (the first principle).
- Apply the first principle to find the derivatives of functions.

A. Basic concepts of limits of functions

- A function $f(x)$ is said to have a limit (極限) L as x approaches a if $f(x)$ can be made as close to a finite number L as we like by taking x sufficiently close to a.
- In symbols, we write $\lim _{x \rightarrow a} f(x)=L$.
- For example,
(i) if $x \rightarrow 2$, then $x+3 \rightarrow 5$. So we write $\lim _{x \rightarrow 2}(x+3)=5$.
(ii) If $x \rightarrow-3$, then $x^{2} \rightarrow 9$. So we write $\lim _{x \rightarrow-3} x^{2}=9$.

B. Theorems on limits of functions

- Let $\lim _{x \rightarrow a} f(x)=A, \lim _{x \rightarrow a} g(x)=B$, where A and B are finite numbers, and k is a real constant. Then we have:
(i) $\lim _{x \rightarrow a} k=k$
(ii) $\lim _{x \rightarrow a} k f(x)=k \lim _{x \rightarrow a} f(x)=k A$
(iii) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=A \pm B$
(iv) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=A \cdot B$
(v) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{A}{B}$, provided that $B \neq 0$.
(vi) $\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow a} f(x)}=\sqrt{A}$, provided that $A \geq 0$.

C．Useful formulae

（i） $\lim _{x \rightarrow \infty} \frac{1}{x}=0$
（ii） $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1$ ，where θ is in radian measure．

D．Slope of the tangent to a curve

－In Figure 10．1，$A\left(x_{0}, f\left(x_{0}\right)\right)$ is a fixed point and $B\left(x_{0}+\Delta x, f\left(x_{0}+\Delta x\right)\right.$ ）is a variable point on the curve．
$A T$ is a tangent（切線）to the curve at A ．

$$
\text { Slope of } \begin{aligned}
A B & =\frac{\Delta y}{\Delta x} \\
& =\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
\end{aligned}
$$

Figure 10.1
－When B gets closer and closer to $A, \Delta x$ approaches zero and the slope of $A B$ approaches the slope of $A T$ ．Thus

$$
\text { Slope of } A T=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \text {. }
$$

Reminder

Δx is called the increment （增量）of x ．
－We take the slope of this tangent $A T$ as the slope of the curve at A ．

E．Derivatives

－The derivative（導數）of a function $y=f(x)$ with respect to x ，denoted by $\frac{\mathrm{d} y}{\mathrm{~d} x}$ ，is defined as $\frac{\mathrm{d} y}{\mathrm{~d} x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ ，provided that this limit exists．
－The above definition is called first principles（基本原理）of finding the derivative of a function of $f(x)$ with respect x ．
－$\frac{\mathrm{d} y}{\mathrm{~d} x}$ may be denoted as $f^{\prime}(x), y^{\prime}$ or $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$ and is called the derived function（導函數）。
－The derivative of $f(x)$ at $x=x_{0}$ is the slope of the tangent to the curve $y=f(x)$ at $x=x_{0}$ ．
We denote it by $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{0}}$ or $f^{\prime}\left(x_{0}\right)$ ．
－The process of finding the derivative of a function is called differentiation （微分法）．

Guided Example 11

Let C be the curve $y=x^{3}-3 x+1 . P(1,-1)$ and $Q(-2,-1)$ are two points on C ．
（a）Find the equations of the tangent and the normal to C at P ．
（b）Show that the normal to C at Q passes through the point $B(7,-2)$ ．

Suggested Solution

（a）$\frac{d y}{d x}=3 x^{2}-3$
$\therefore \quad$ Slope of the tangent at $(1,-1)=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{\substack{x=1 \\ y=-1}}$

$$
\begin{aligned}
& =3(1)^{2}-3 \\
& =0
\end{aligned}
$$

$\therefore \quad$ The equation of the tangent is

$$
y=-1 .
$$

\therefore The equation of the normal is

$$
\underline{\underline{x=1}} .
$$

（b）Slope of the tangent at $Q(-2,-1)=3(-2)^{2}-3$

$$
=9
$$

\therefore Slope of the normal at $Q=(-2,-1)=-\frac{1}{9}$
Note that slope of $B Q=\frac{(-2)-(-1)}{7-(-2)}$

$$
=-\frac{1}{9}
$$

\therefore The normal to C at Q will pass through B ．

The slope of the tangent at P is o means that the tangent line is horizontal． Hence，the normal at P is vertical．

$$
=\text { slope of the normal at } Q
$$

Figure 10.3

GloSSary	鏈式法則	limit	極限
Chain Rule	導數	normal	法線
derivative	導函數	parameter	參數
derived function	微分法	parametric function	參數函數
differentiation	一階導數	Power Rule	雲規律
first derivative	基本原理	Product Rule	積法則
first principles	隱函數	Quotient Rule	商法則
implicit function	增量	second derivative	二階導數
increment	反函數	tangent	切線

Guided Example 7

Figure 11.15 shows a right circular cone of radius $x \mathrm{~cm}$ and height $(6-x) \mathrm{cm}$. Let $V \mathrm{~cm}^{3}$ be the volume of the cone.
(a) (i) Express V in terms of x.
(ii) Hence find the range of values of x for which
(1) V is increasing, and
(2) V is decreasing.
(b) The cone is placed completely inside a right circular cylinder of radius 3 cm and height 4 cm , as shown in Figure 11.16.
(i) Show that $2 \leq x \leq 3$.
(ii) Hence find the greatest volume of the cone.

Suggested Solution

(a) (i) $V=\underline{\underline{\frac{1}{3}} \pi x^{2}(6-x)}$
(ii) $\frac{\mathrm{d} V}{\mathrm{~d} x}=\frac{1}{3} \pi\left(12 x-3 x^{2}\right)$
$=\pi x(4-x)$

x	$0<x<4$	$x=4$	$4<x<6$
$\frac{\mathrm{~d} V}{\mathrm{~d} x}$	+	0	-

\therefore For $0<x<4, V$ is increasing.
For $4<x<6, V$ is decreasing.
(b) (i) By comparing the height and the base radius of the cone and the cylinder, we have

$$
\begin{array}{rlr}
& x \leq 3 \text { and } & 6-x \leq 4 \\
& x \leq 3 \text { and } & x \geq 2 \\
\therefore & 2 \leq x \leq 3 &
\end{array}
$$

(ii) S Ince V is increasing for $2 \leq x \leq 3, V$ is maximized when $x=3$.

The greatest volume of the cone

$$
\begin{aligned}
& =\frac{1}{3} \pi(3)^{2}(6-3) \\
& =9 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Figure 11.15

Figure 11.16

The radius and the height of the cone must be positive.
Hence $x>0$ and $6-x>0$.
$\therefore 0<x<6$.

边 Reminder
From the graph of $V=\frac{1}{3} \pi x^{2}(6-x)$, we can see that for $2 \leq x \leq 3, V$ is maximum when $x=3$.

Figure 11.17

Important Formulae

- The First Derivative Test

Let $y=f(x)$ be a differentiable function defined in an interval $a<x<b$.

- If $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{1}}=0$, and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ changes sign from + to - as x increases through x_{1}, then $\left(x_{1}, f\left(x_{1}\right)\right)$ is a maximum point.
- If $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{2}}=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ changes sign from - to + as x increases through x_{2}, then $\left(x_{2}, f\left(x_{2}\right)\right)$ is a minimum point.
- The Second Derivative Test

Let $y=f(x)$ be a function which has a second derivative.

- If $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{1}}=0$ and $\left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|_{x=x_{1}}<0$, then $\left(x_{1}, f\left(x_{1}\right)\right)$ is a maximum point of the curve $y=f(x)$.
- If $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{2}}=0$ and $\left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|_{x=x_{2}}>0$, then $\left(x_{2}, f\left(x_{2}\right)\right)$ is a minimum point of the curve $y=f(x)$.
- If a quantity Q is a function of time t, then the derivative $\frac{\mathrm{d} Q}{\mathrm{~d} t}$ is the rate of change of Q with respect to time t.
- If $\frac{\mathrm{d} Q}{\mathrm{~d} t}>0$, then Q increases as t increases.
- If $\frac{\mathrm{d} Q}{\mathrm{~d} t}<0$, then Q decreases as t increases.

Examination Question Analysis

Topics	Section A	Section B
Finding the greatest and least values	$91(\mathrm{I}-4), 03(\mathrm{I}-13)$	-
Rate of change	$92(\mathrm{I}-7), 97(\mathrm{I}-4), 99(\mathrm{I}-8)$	$91(\mathrm{I}-12), 96(\mathrm{I}-11), 98(\mathrm{I}-13)$, $00(\mathrm{I}-13)$
Curves sketching	$95(\mathrm{I}-3)$	$90(\mathrm{I}-10), 91(\mathrm{I}-11), 92(\mathrm{I}-12)$, $93(\mathrm{I}-11), 94(\mathrm{I}-9), 96(\mathrm{I}-9)$, $97(\mathrm{I}-10), 98(\mathrm{I}-10), 99(\mathrm{I}-9)$, $00(\mathrm{I}-10), 01(18)$
Optimization problems		$90(\mathrm{I}-11), 92(\mathrm{I}-11), 93(\mathrm{I}-9)$, $94(\mathrm{I}-12), 95(\mathrm{I}-9), 95(\mathrm{I}-12)$, $97(\mathrm{I}-12), 97(\mathrm{I}-13), 99(\mathrm{I}-12)$, $99(\mathrm{I}-13), 02(14), 04(16)$

Additional Mathematics

Mock Examination 1

Time Allowed: $2 \frac{1}{2}$ hours

This paper must be answered in English

1. Answer ALL questions in Section A and any FOUR questions in Section B.
2. Write your answers in the answer book provided. For Section A, there is no need to start each question on a fresh page.
3. All working must be clearly shown.
4. Unless otherwise specified, numerical answers must be exact.
5. In this paper, vectors may be represented by bold-type letters such as \mathbf{u}, but candidates are expected to use appropriate symbols such as \vec{u} in their working.
6. The diagrams in the paper are not necessarily drawn to scale.

Index

A

absolute maximum 絕對極大值
absolute minimum 絕對極小值

C

Chain Rule 鏈式法則
collinear 共線
constant of integration 積分常數

D

definite integral 定積分
derivative 導數
derived function 導函數
differentiation 微分法

F

first derivative 一階導數
first principles 基本原理
Fundamental Theorem of Calculus 微積分基本定理

I

implicit function 隱函數47
increment 增量 41
indefinite integral 不定積分
integral sign 積分符號
integrand 被積函數
integration 積分法
inverse function 反函數
L
limit 極限
lower limit下限

M

maximum point 極大點
minimum point 極小點

N

normal 法線 51
P
parallelogram law of addition 平行四邊形加法律 5
parameter 參數 46
parametric function 參數函數 46
position vector 位置向量 12
Power Rule 幕規律 45
primitive function 原函數 108
Product Rule 積法則 46
Q
Quotient Rule 商法則 46
R
reduction formula 歸約公式 116
relative maximum 相對極大值 65
relative minimum 相對極小值 65
S
scalar 標量／純量 4
scalar product 純量積 14
second derivative二階導數 47
stationary point 駐點 65
T
tangent 切線 41
triangle law of addition 三角形加法律 4
turning point 轉向點 65
U
unit vector 單位向量 6
upper limit 上限 114
V
vector 向量／矢量 4
Z
zero vector 零向量 4

10 Differentiation

Section A

2. (a) $\lim _{x \rightarrow 1}\left(\frac{3}{x^{3}-1}-\frac{1}{x-1}\right)$

$$
=\lim _{x \rightarrow 1}\left[\frac{3}{(x-1)\left(x^{2}+x+1\right)}-\frac{1}{x-1}\right]
$$

$$
=\lim _{x \rightarrow 1} \frac{3-x^{2}-x-1}{(x-1)\left(x^{2}+x+1\right)}
$$

$$
=\lim _{x \rightarrow 1} \frac{-(x-1)(x+2)}{(x-1)\left(x^{2}+x+1\right)}
$$

$$
=\lim _{x \rightarrow 1} \frac{-(x+2)}{x^{2}+x+1}
$$

$$
=\frac{-((1)+2)}{(1)^{2}+(1)+1}
$$

$$
=\underline{\underline{-1}}
$$

$$
\begin{aligned}
& \text { 1. (a) } \lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{x^{2}-6 x+8}=\lim _{x \rightarrow 2} \frac{(3 x+1)(x-2)}{(x-4)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{3 x+1}{x-4} \\
& =\frac{3(2)+1}{(2)-4} \\
& =\underline{\underline{-\frac{7}{2}}} \\
& \text { (b) } \lim _{x \rightarrow 1} \frac{(x-1)^{3}}{x^{4}-1}=\lim _{x \rightarrow 1} \frac{(x-1)^{3}}{\left(x^{2}-1\right)\left(x^{2}+1\right)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)^{3}}{(x-1)(x+1)\left(x^{2}+1\right)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)^{2}}{(x+1)\left(x^{2}+1\right)} \\
& =\frac{((1)-1)^{2}}{((1)+1)\left((1)^{2}+1\right)} \\
& =\underline{\underline{0}} \\
& \text { (c) } \lim _{x \rightarrow 0} \frac{\frac{1}{x+2}-\frac{1}{2}}{x}=\lim _{x \rightarrow 0} \frac{1}{x} \cdot \frac{2-x-2}{(x+2) 2} \\
& =\lim _{x \rightarrow 0} \frac{-1}{(x+2) 2} \\
& =\frac{-1}{((0)+2) 2} \\
& =\underline{\underline{-\frac{1}{4}}}
\end{aligned}
$$

(b) $\lim _{x \rightarrow 2} \frac{3-\sqrt{x+7}}{x^{2}-4}$
$=\lim _{x \rightarrow 2} \frac{(3-\sqrt{x+7})(3+\sqrt{x+7})}{(x-2)(x+2)(3+\sqrt{x+7})}$
$=\lim _{x \rightarrow 2} \frac{9-x-7}{(x-2)(x+2)(3+\sqrt{x+7)}}$
$=\lim _{x \rightarrow 2} \frac{-(x-2)}{(x-2)(x+2)(3+\sqrt{x+7)}}$
$=\frac{-1}{(2+2)(3+\sqrt{2+7})}$
$=\underline{\underline{-\frac{1}{24}}}$
3. (a)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x}{\sqrt{1+x+x^{2}}-1} \\
= & \lim _{x \rightarrow 0} \frac{x}{\sqrt{1+x+x^{2}}-1} \cdot \frac{\sqrt{1+x+x^{2}}+1}{\sqrt{1+x+x^{2}}+1} \\
= & \lim _{x \rightarrow 0} \frac{x\left(\sqrt{1+x+x^{2}}+1\right)}{x+x^{2}} \\
= & \lim _{x \rightarrow 0} \frac{\sqrt{1+x+x^{2}}+1}{1+x} \\
= & \underline{2}
\end{aligned}
$$

(b) $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x^{2}+3}-2}=\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x^{2}+3}-2} \cdot \frac{\sqrt{x^{2}+3}+2}{\sqrt{x^{2}+3}+2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{(x-1) \sqrt{x^{2}+3}+2}{x^{2}-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}+3}+2\right)}{(x-1)(x+1)} \\
& =\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}+2}{x+1} \\
& =\underline{2}
\end{aligned}
$$

4. (a) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-5 x^{2}-1}{6 x^{3}+7 x-2}=\lim _{x \rightarrow \infty} \frac{4-\frac{5}{x}-\frac{1}{x^{3}}}{6+\frac{7}{x^{2}}-\frac{2}{x^{3}}}$
$=\frac{4}{6}$
$=\frac{2}{\underline{3}}$
