Exam Paper Formai

The H KCE M athematics Examination, starting from 2006, consists of two papers.

Past Exam @uestions Distrfburfon (Paper 1)

Topics Years	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Percentages	12	10a	7	17a	10b	8, 14b	6b	5	3	$\underset{\text { (ii) }}{6,16 a(i),}$
Estimation, Rates, Ratios, and Variations	13a	1	12	6	8	13a	11a	10a	10a	5,10a
Polynomials and Formulas	1,4	1	5,9	2,15b	1,6	2,6	4	1,3	2, 6	1, 3, 10b
Indices, Surds and Logarithms	2	2, 3, 10b	4	1	2	1	1	4	1	2, 16b
Functions and Graphs	1	13	1	7	1	13c	/	/	4	1
Equations	$\left\|\begin{array}{c} 4,13 a \\ 13 b, 13 c \end{array}\right\|$	8	/	15b	10a	13b, 16a	1	6	7	1
Inequalities and Linear Programming	5, 9b, 9c	4	18	3,17b(ii)	5,15	$\begin{gathered} 4,15 \mathrm{a} \\ 15 \mathrm{~b}(\mathrm{i} \end{gathered}$	17, 17b	$2,10 \mathrm{~b}$	10b	4
Trigonometry	$\begin{gathered} 15,17 b, \\ 17 c \end{gathered}$	6,12a(i)	3, 17	4, 9a, 18	4,17	$\begin{aligned} & 9,16 b \\ & \text { 17a(ii) } \end{aligned}$	3,14	$\begin{gathered} 9,14, \\ 15 \mathrm{a}(\mathrm{ii}) \end{gathered}$	5,17	14
Sequences	3	15	13	17b(i)	14	$\begin{gathered} 12 \mathrm{a}, \\ \text { 12b(ii) } \end{gathered}$	13b, 13c	7, 15b(ii)) 15	$\begin{gathered} 7, \\ \text { 16a(iii) } \end{gathered}$
M ensuration	$\begin{gathered} 7 \mathrm{a}, 8, \\ 16 \mathrm{a} \end{gathered}$	5c, 7a, 12a(ii) 12b(i), (ii), (iii)	1, 16a	9b, 13	$\begin{gathered} 3,18 \mathrm{a}, \\ \text { 18b(i), } \\ \text { (ii) } \end{gathered}$	$\begin{gathered} 3,9 \\ 12 \mathrm{~b}(\mathrm{i}), \\ 16 \mathrm{a} \end{gathered}$	$\begin{gathered} 2,6 a, \\ 11 \mathrm{~b}, 13 \mathrm{a}, \\ 15 \mathrm{a}(\mathrm{i}), \\ 15 \mathrm{~b} \end{gathered}$	$\begin{gathered} 13, \\ 15(\mathrm{a})(\mathrm{i}) \end{gathered}$	9,12b(ii)	$\begin{gathered} \hline 9,12, \\ 13 c \end{gathered}$
Deductive Geometry	10		2, 6, 14	14	13	11	10	8, $15 a(i i i)$, $15 b(i)$	$\begin{gathered} 12 \mathrm{a}, \\ 12 \mathrm{~b}(\mathrm{i}) \end{gathered}$	8,17a(ii)
Circles	6	9, 16a	6, 14	$\begin{aligned} & 5,16 a, \\ & \text { 16b(iii) } \end{aligned}$	$\begin{aligned} & \text { 7, 16a, } \\ & \text { 16b(i) } \end{aligned}$	5, 17b	9, 16a	17a	$\begin{gathered} \text { 16a, 16b, } \\ 16 \mathrm{c}(\mathrm{i}) \end{gathered}$	$\begin{aligned} & \text { 17a(i), } \\ & \text { 17b(ii) } \end{aligned}$
Coordinate Geometry	9a, 11	16b	8, 15	$\begin{gathered} 10, \\ 16 \mathrm{~b}(\mathrm{i}), \\ \text { (ii) } \end{gathered}$	9,16b(ii)	7, 17a(i)	$\begin{gathered} 8,16 b, \\ 17 a \end{gathered}$	12, 17b	$\begin{gathered} 13,14 a, \\ 14 c \\ 16 c(i i) \end{gathered}$	$\left\lvert\, \begin{gathered} 13 a, \\ 13 b, 17 b(i) \end{gathered}\right.$
Probability	7 b	14	11	12	12	15b(ii)	12c	16	8	11, 15c
Statistics	14	11	10	8,11	11	10	$\begin{gathered} 5,12 \mathrm{a} \\ 12 \mathrm{~b} \end{gathered}$	11	11	15a, 15b

Fam Surcegies

A. General Strategies

1. In the examination centre

- M ake sure your watch matches with that of the examination centre.
- Listen carefully to the invigilator for any errors and changes in the examination papers.
- Read carefully the instructions on the cover of the answer book or question book.
- Check carefully whether there are any omitted or blank pages in the examination paper or not according to the invigilator's instruction.

2. D uring the examination

- Attempt the required number of questions. (Please refer to Exam Paper Format on p v.)
- Use proper stationeries.
- Paper 1: use a pen mainly, but a HB pencil for drawing.
- Paper 2: use a H B pencil.
- Show your work clearly and neatly.
- Do not be stuck in any one of the questions. Skip it and go on to another one.

3. After finish answering the questions

- Do not be tempted to leave early.
- Check whether there are any questions missed out or not.
- Go back to questions skipped earlier.
- Check whether there are any careless mistakes or not.
- Do not cross out anything before you find enough time to replace it correctly.
- M ake sure you write your candidate number on the answer book, supplementary answer sheets and multiple-choice answer sheet.

B. Specific Strategies

1. Paper 1 (2 hours)

- Allocate a reasonable proportion of time to each section and allow 5 minutes for final checking.

Sections	Suggested Time Allocation	Approximate Time per Q uestion
A (1)	30 minutes	$3-4$ minutes
A (2)	40 minutes	$8-10$ minutes
B	45 minutes	15 minutes

- M ake your draft in the draft paper provided.
- Show your formulas and steps rather than just writing down the answers. In case you do not get the correct answer, you can get the marks for the correct methods used.

11 Mensuration

Revien

11.1 Planes figures

(a) Rectangle

Perimeter $=2(a+b)$
Area $=a b$

Figure 11.1
(b) Square

Perimeter $=4 a$
Area $=a^{2}$

Figure 11.2

Figure 11.3

Figure 11.4
4. If $\theta=\phi$, then $A B=B C$ (or $\widehat{A B}=\widehat{B C}$).
(equal $\angle s$, equal chords / arcs)
Conversely, if $A B=B C($ or $\widehat{A B}=\widehat{B C})$, then $\theta=\phi$. (equal chords /arcs, equal $\angle s)$

Figure 13.14
5. $\overparen{A B}: \overparen{C D}=\theta: \phi \quad$ (arcs prop. to $\angle s$ at $\bigodot^{c e}$)

Figure 13.15

For example, in Figure 13.16, $\widehat{A B}: \overparen{B C}: \widehat{A C}=1: 2: 1$.
Find $\angle B A C$.
Since $\widehat{A B}: \widehat{B C}: \widehat{A C}=1: 2: 1$,
$\therefore \angle B C A: \angle B A C: \angle A B C=1: 2: 1$
(arcs prop. to \angle sat $\odot^{c e}$)
Since the sum of angles of a triangle is 180°,
$\therefore \angle B A C=180^{\circ} \times \frac{2}{1+2+1}$
$=90^{\circ}$

Figure 13.16

13.4 Cyclic quadrilaterals

If $A B C D$ is a cyclic quadrilateral, then
(i) $\angle B A D+\angle B C D=180^{\circ}$ and $\angle A D C+\angle A B C=180^{\circ}$. (opp. $\angle s$ s, cyclic quad.)
(ii) $\angle D C E=\angle B A D . \quad$ (ext. \angle, cyclic quad.)

Figure 13.17

Demonstration

Section A(1)

1. Consider the points $A(5,-1)$ and $B(-2,6)$. Find
(a) the distance between A and B;
(b) the mid-point of A and B.
(Express the answer in surd form if necessary.) (3 marks)

Suggested Solution

(C_{5}^{\prime})' Guidelines
Distance
(a) $A B=\sqrt{(5-(-2))^{2}+(-1-6)^{2}}$

1M
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{7^{2}+(-7)^{2}}$
$=\sqrt{98}$
$=\underline{\underline{7 \sqrt{2}} \text { units }}$
1A "T" Guidelines
Mid-point
(b) The coordinates of the mid-point of A and $\left.B=\left(\frac{5+(-2)}{2}, \frac{-1+6}{2}\right)\right]=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
=\left(\frac{3}{2}, \frac{5}{2}\right)
$$

IA
N_{F} 2. If a point $P(2, y)$ divides the line segment $A B$ in the ratio 1 : s internally where $A=(3,5)$ and $B=(-1,-4)$, find the values of s and y.
(3 marks)

Suggested Solution

$P(2, y)=\left(\frac{1(-1)+s(3)}{1+s}, \frac{1(-4)+s(5)}{1+s}\right)$
1M
Equating the x and y coordinates, we have
$2=\frac{-1+3 s}{1+s}$
and $y=\frac{-4+5 s}{1+s}$
From (1), $2+2 s=-1+3 s$

$$
-s=-3
$$

$$
s=\underline{\underline{3}}
$$

Substituting $s=3$ into (2), $y=\frac{-4+5(3)}{1+(3)}=\frac{11}{\underline{4}}$

Figure 14.18

```
781
- 243
    (\frac{3}{4}\mp@subsup{)}{}{5}=(\frac{3}{4}\mp@subsup{)}{}{n}
    n= 5
```


Section A(2)

$N E$ 7. (a) Find the smallest and the largest multiples of 6 between 100 and 599 inclusive.
(b) How many multiples of 6 are there between 100 and 599 inclusive?
(c) Find the sum of all multiples of 6 from 100 to 599 inclusive.

(7 marks)

Suggested Solution

(a) The smallest and the largest multiples of 6 between 100 and 599 inclusive are 102 and 594 respectively.
(b) The multiplies of 6 between 100 and 599 inclusive form an arithmetic sequence with first term $a=102$, common difference $d=6$ and last term $=594$.

$$
\begin{aligned}
T(n) & =a+(n-1) d \\
594 & =102+(n-1)(6) \\
594 & =6 n+96 \\
6 n & =498 \\
n & =83
\end{aligned}
$$

\therefore There are 83 multiples of 6 between 100 and 599 inclusive.
1 M
(c) $S(83)=\frac{83}{2}(102+594)$
1M

$$
=28884
$$

1A
\therefore The sum of all multiples of 6 from 100 to 599 inclusive is 28884 .
8. The number of applications for $A B C$ credit card is 20500 at the end of 2004. If the number of applications is increased by 5% in the subsequent years, find
(a) the number of applications for $A B C$ credit card at the end of 2005;

Practice

* Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
* The diagrams are not necessarily drawn to scale.

Section A(1)

1. Find the mean, the mode and the median of $4,9,13,19,19,21$ and 27 .
2. Consider a set of data: $0.9,1.2,1.5,0.5,0.3$ and 1.5 . Find the mean, the mode and the median of the data.
N_{F} 3. If 5, y and 25 form an arithmetic sequence, find
(a) the value of y;
(b) the mean.
N_{F} 4. If 4.5, a and 2 form a geometric sequence, find
(a) the values of $a ;$
(b) the common ratios;
(c) the means.
3. Find the range, the inter-quartile range and the standard deviation of $4,5,6,7,9$ and 11 . (Working steps are not required for finding the standard deviation.)
4. Find the range, the inter-quartile range and the standard deviation of $3.1,8.5,10.3,13.5,17.9,21.4$, 25.2 and 29.8. (W orking steps are not required for finding the standard deviation.)
5. The mean of 5 numbers is 25 . If 6 and 7 are added to this set of data, find the new mean. Hint1
6. C onsider a set of data arranged in ascending order: $a, 5,7, b, 13$ and 18 . If the median and the mean of this set of data are 9 and 9.5 respectively, find the values of a and b.
7. Consider a set of data: $2,8,12,16,20, x$ and y. If the mean and the standard deviation of this set of data are 11 and $\sqrt{\frac{202}{7}}$ respectively, find the value of $x y$. Hint2
8. Find the mean and the inter-quartile range of $x, x, x+2, x-3, x+5$ and $x-7$.

15 Probability

Section A (1)

1. $P($ prize $)$
$=P(2$ or 4$)$
$=\frac{2}{6}$
$=\frac{1}{\underline{3}}$
2. (a) $P($ tail $)$
$=\frac{81}{300}$
$=\frac{27}{\underline{\underline{100}}}$
(b) $\quad P$ (head)
$=\frac{219}{300}$
$=\frac{73}{\underline{\underline{100}}}$
3. (a) $P(5)=\frac{32}{400}$

$$
=\frac{2}{\underline{25}}
$$

(b) $P($ odd $)=\frac{70+56+32}{400}$

$$
=\frac{79}{\underline{\underline{200}}}
$$

(c) $P($ less than 3$)=\frac{70+53}{400}$

$$
=\frac{123}{\underline{400}}
$$

4. The 24 possible outcomes are listed below:

1 2nd	1	2	3	4
1	0	1	2	3
2	1	0	1	2
3	2	1	0	1
4	3	2	1	0
5	4	3	2	1
6	5	4	3	2

(a) $P(0)=\frac{4}{24}$

$$
=\frac{1}{\underline{\underline{6}}}
$$

(b) $P(2)=\frac{6}{24}$

$$
=\frac{1}{\underline{4}}
$$

(c) $P(6)=\underline{\underline{0}}$
(d) $P($ greater than 3$)=\frac{3}{24}$

$$
=\frac{1}{\underline{\underline{8}}}
$$

5. (a) $P($ even $)=\frac{3}{\underline{7}}$
(b) (i) The 42 possible outcomes are listed below:

2 nd	1	2	3	4	5	6	7
1	\times	2	3	4	5	6	7
2	2	\times	6	8	10	12	14
3	3	6	\times	12	15	18	21
4	4	8	12	\times	20	24	28
5	5	10	15	20	\times	30	35
6	6	12	18	24	30	\times	42
7	7	14	21	28	35	42	\times

(ii) $\quad P($ reward $)=\frac{30}{42}$
$=\frac{5}{7}$
${ }_{V}^{N}$ Alternative Method
P (reward)
$=P($ first card is even $) P($ second card is odd $)+$ $P($ first card is odd) $P($ second card is even $)+$ P (both cards are even)
$=\left(\frac{3}{7} \times \frac{4}{6}\right)+\left(\frac{4}{7} \times \frac{3}{6}\right)+\left(\frac{3}{7} \times \frac{2}{6}\right)$
$=\frac{5}{7}$

