
(c) Extension parts of the syllabus

Some parts of the syllabus form the extension. Only questions in Section B of the examination paper will involve these parts.

Sections	Topics of the extension part
1 Planet Earth	_
2 The Microscopic World	• Predicting the chemical properties of unfamiliar elements in Groups I, II, VII and 0 of the Periodic Table
3 Metals	 Empirical formulae derived from experimental data Corrosion resistance of aluminum Anodisation as a method to enhance corrosion resistance of aluminium
4 Acids and Alkalis	 Strength of acids and alkalis Preparation of soluble and insoluble salts based on neutralisation Simple volumetric work involving acids and alkalis Rate of reaction
5 Chemical Cells and Electrolysis	 Nitric acid of different concentrations as oxidizing agent to give NO and NO₂ Reactions in chemical cells consisting of half cell(s) other than metal-metal ions systems Reactions in zinc-carbon cell Electrolysis
6 Products from Important Processes	 Manufacture of chlorine by electrolysis of brine Designing and performing experiments to make chlorine bleach Molar volume of gases at room temperature and pressure Calculations involving molar volume of gases Chemical plants
7 Fossil Fuels and of Carbon Compounds	_
8 Plastics and Detergents	 Condensation polymerization as exemplified by the formation of nylon and polyester Production of soaps by reacting fats or oils with an alkali Cleaning abilities of soaps and soapless detergents in hard water Environmental problems associated with the use of detergents
9 Detection and Analysis	• Designing and performing an investigation to deduce the chemical nature of a given sample

1.3 Rocks and minerals

Learning Focus

- Recognize that rocks are the source of minerals.
- Learn the method of isolating useful materials from minerals, for example, the extraction of metals from their ores.
- Recognize that limestone, chalk and marble are different forms of calcium carbonate.
- Study the weathering and erosion of rocks.
- Explore the thermal decomposition of calcium carbonate.
- Learn the tests for the presence of calcium and carbonate in a sample of limestone, chalk or marble.

A. Rocks as the source of minerals

- The rock of the Earth is a solid mass of a mixture of minerals (礦物質).
- Minerals are naturally occurring metal compounds. They have definite crystalline structures and chemical compositions.
- Since many metals are very reactive, they do not exist as free elements. They occur naturally in rocks as compounds in ores (礦石).
- An ore is a rock that has a lot of a metal compounds.
- These ores are usually metal oxides and sulphides which are mixed with impurities.
- The following table shows the various metals in ores:

Metals	Ores	Metal compounds present in the ore
Sodium	Rock salt	Sodium chloride
Aluminium	Bauxite	Aluminium oxide
Zinc	Zinc blende	Zinc sulphide
Iron	Haematite	Iron(III) oxide
Lead	Galena	Lead(II) sulphide
Copper	Copper pyrite	Copper iron sulphide

Rocks are the source of a wide range of minerals. There are three types of rock:

- (1) igneous rock;
- (2) sedimentary rock; and
- (3) metamorphic rock.

Table 1.4

3.4 Corrosion of metals and their protection

Learning Focus -

- Recognize the factors affecting the rusting of iron.
- Learn the methods for preventing iron from rusting, e.g. painting, oiling, coating with plastics, tin-plating, sacrificial protection and alloying.
- Understand the socioeconomic implications of corrosion of metals.
- Recognize the corrosion of aluminium. Extension
- Use anodisation to enhance the corrosion resistance of aluminium. Extension

A. Corrosion of metals

- Corrosion (腐蝕作用) is the slow reaction of metal with air, water or other substances in the environment.
- The more reactive metals corrode at a faster rate than the less reactive ones. For example, sodium metal corrodes at a faster rate than copper metal.
- The corrosion of iron is called rusting (生銹).
- In the first stage of rusting, iron(II) ions are produced from iron metal.

$$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-1}$$

• Iron(II) ions are then involved in a series of chemical changes. The overall change can be simplified as:

 $4\mathrm{Fe}(\mathrm{s}) + 2n\mathrm{H}_2\mathrm{O}(\mathrm{l}) + 3\mathrm{O}_2(\mathrm{g}) \rightarrow 2\mathrm{Fe}_2\mathrm{O}_3 \boldsymbol{\cdot} n\mathrm{H}_2\mathrm{O}(\mathrm{s})$

hydrated iron(III) oxide = rust (銹) (reddish brown)

- The equation of rusting is simplified and unbalanced.
- Water and oxygen are involved in the chemical reaction for iron rusting.

B. Conditions for rusting

- Water and air are essential for rusting.
- The following experiment shows the need of water and air for rusting:

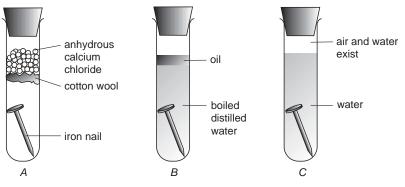


Figure 3.13

- Anhydrous (無水的) calcium chloride (CaCl₂) is used to absorb water.
- The word 'anhydrous' must be stated when CaCl₂ is used to absorb water.

Interpretation •

> The rate of formation of carbon dioxide gas is found to be greater when using powdered calcium carbonate.

Guided Example 21

A student added 1 g of powdered calcium carbonate to 40 cm³ of 1.0 M hydrochloric acid at room temperature and atmospheric pressure. The volume of gas was collected and recorded. The result is graphically represented by curve X:

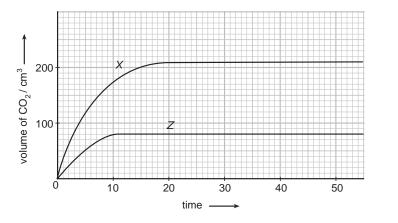
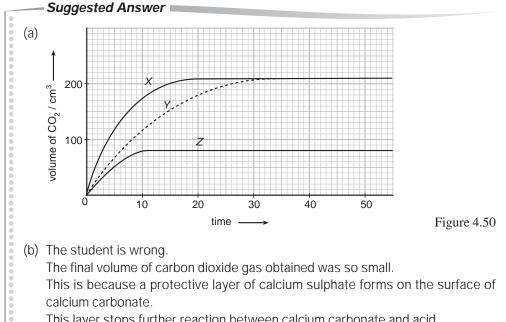



Figure 4.49

- (a) Using the same mass of calcium carbonate in the form of marble chips, curve Y should be obtained. Sketch curve *Y* on the above graph.
- (b) Curve Z was obtained when 1.0 g of marble chip was put in 40 cm³ of 0.5 M sulphuric acid. A student told his teacher the sketched curve Z was wrong. Comment on the student's suggestion.

(Assuming there is no change in the temperature and it is under atmospheric pressure.)

- calcium carbonate.
- This layer stops further reaction between calcium carbonate and acid.

Reminder

The surface areas of

powdered calcium

carbonate and marble

chips are different.

- Interpretation
 - An increase in temperature increases the rate of reaction.
 - The graph of (1 / t vs. T) is NOT a straight line. This indicates that a smaller rise in temperature would greatly increase the reaction rate.

Guided Example 22

One of the components of an egg shell is calcium carbonate. A student added 50 cm^3 of 2 M hydrochloric acid to 0.1 g of egg shells in a container. After half an hour, all the egg shells had dissolved and carbon dioxide was collected and recorded.

- (a) Write an ionic equation for the reaction between calcium carbonate and hydrochloric acid.
- (b) The time taken for the reaction was very long. Suggest TWO ways to increase the rate of this reaction without using other chemicals. Explain your answer.

Suggested Answer

(a) $CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + H_2O(I) + CO_2(g)$

- (b) Crushing the egg shells / making egg shells into powdered form to increase the surface area. A faster reaction rate would be expected.
 - Heating the mixture / increasing the temperature would increase the rate of chemical reaction. This is because there is a larger number of particles with enough energy (activation energy) for successful collisions.

- Glossary	9	0	0	0	0	9	9	9	0	0	9	0	0	0	6	9	6	6	5

	π		由 赤柱 去与
acid	酸	neutral	中性的
acidic	酸性的	neutralisation	中和作用
acidity	酸度	pH meter	pH 計
alkali	鹼	pH value	酸鹼值
alkaline	鹼性的	pipette	移液管
alkalinity	鹼度	precipitate	沉澱物
basicity	鹼度 / 鹽基度	standard solution	標準溶液
burette	滴定管	strong acid	強酸
concentration	濃度	strong alkali	強鹼
crystal	日間	titration	滴定〔法〕
crystallization	結晶	universal indicator	通用指示劑
data logger	數據記錄儀	volumetric analysis	容量分析
evaporation	蒸發	volumtric flask	容量瓶
filtrate	濾液	water of crystallization	結晶水
filtration	過濾	weak acid	弱酸
indicator	指示劑	weak alkali	弱鹼
molarity	摩爾濃度		

Reminder 1 / t represents the rate of

reaction.

'Without using chemical' means that catalyst or larger amount of egg shells cannot be used to fasten the rate of reaction.

Calcium carbonate $(CaCO_3)$ is insoluble in water, so CO_3^{2-} cannot be written in the ionic equation.

New Certificate Chemistry: Complete Notes and Exam Practices 1 (Revised Edition)

Important Formulae ceccece	eccec
Number of moles	
Mass of substance in (g)	
Molar mass in (g / mol)	
Number of particles	
Avogadro's number	
Molarity of a solution (M or mol dm^{-3})	
Number of moles of solute	
$= \overline{\text{Volume of solution (in dm}^3)}$	
Concentration of a solution $(g dm^{-3})$	
Mass of a substance	
$\frac{1}{\text{Volume of solution (in dm}^3)}$	

Examination Question Analysis

Topics	Conventional Questions (Year)	Multiple-choice Questions (Year)	
Acids	93(3b, 4b), 94(1), 95(7a), 98(4, 8), 00(1), 01(2), 03(1b), 04(8a), 05(3b)	93(23), 94(15, 16, 28), 95(46), 96(15, 33), 97(31, 39, 50), 98(9, 23), 99(37), 01(35), 02(19, 32, 48), 04(44), 05(14, 29, 38)	
Alkalis	96(6b), 98(3, 4), 01(2), 02(6a, 9a)	97(35, 37), 98(25), 99(20), 00(29), 01(3, 11), 02(17, 24), 03(45)	
Indicators and pH	97(3)	02(5)	
Strength of acids and alkalis	96(6b), 00(7a), 03(4)	94(33)	
Neutralisation and salts	93(1b), 95(5), 96(1), 97(7a), 98(6a), 00(4, 6a), 02(7a), 05(3a)	93(43), 94(31), 95(49), 96(6,10), 97(13), 98(12, 31), 00(11, 22, 49), 03(43), 04(8)	
Concentration of solutions	97(7a), 05(3c)	93(49), 97(6), 00(20), 03(20), 05(22, 34)	
Simple volumetric work	93(1b, 4b), 94(5a, 8a), 99(7b), 00(7a), 01(6a), 02(9b), 03(8b), 04(7a)	94(30), 95(8, 9, 12, 16), 96(28, 49), 97(14), 98(16, 28), 99(6, 25), 01(34), 02(26), 03(30), 05(39, 40, 41)	
Rate of reaction	93(4b), 94(8a), 05(10)	93(39, 40), 05(50)	

Paper I Conventional Questions


Section A

1. 'Sunday spring water' is a brand of bottled water. The following label shows the concentration of ions in the water:

Concentration of ions in 'Sunday spring water'						
lons	(mg / I)	lons	(<u>mg / I)</u>			
Chloride	16	Sodium	12			
Nitrate	4	Potassium	1			
Sulphate	10	Magnesium	22			
Hydrogencarbonate	160	Calcium	48			

- (a) (i) Name TWO metal ions present in the water which give coloured flames in the flame test.
 - (ii) 'The flame test can be used to identify cations in the spring water.' Do you agree this statement. Explain your answer.
- (b) (i) Which TWO ions in 'Sunday Spring Water' come from the mixing of rainwater with chalk rocks?
 - (ii) Write a word equation for the reaction between rainwater and chalk rocks.

(9 marks)

Suggested Answer Guidelines (a) (i) Calcium ion has a brick red flame. $1 + 1^{-1}$ Students should remember the Potassium ion has a lilac flame. 1 + 1following metal ions flame colours: Sodium ion has a golden yellow flame. 1 + 1• Na⁺: golden yellow flame (Any two) • K⁺: lilac / purple flame (ii) Disagree. This is because there are some cations / positive 1 • Ca²⁺: brick-red flame ions in the water. These ions produce their own flame colour. 1 • Cu²⁺: bluish green flame 1+1 (b) (i) Calcium and hydrogencarbonate ions. (ii) Calcium + Carbon + Water → Calcium carbonate dioxide hydrogencarbonate 1

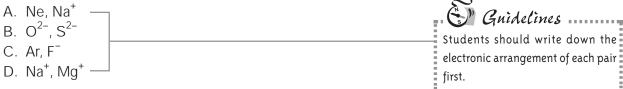
Paper II Multiple-choice Questions

Section A

1. Which of the following is a correct representation of the atomic– structure of atom $\frac{65}{30}X$? –

Number of	Number of	Number of
protons	neutrons	electrons
30	30	65
35	35	30
30	35	30
35	30	35

Answer: C


Α.

В. С. D.

- 2. Which of the following statements about water molecule is / are correct?
 - (1) It is formed by electron transfer.
 - (2) It has low conductivity of electricity.
 - (3) It is a giant covalent substance.
 - A. (1) only
 - B. (2) only
 - C. (1) and (2) only
 - D. (2) and (3) only

Answer: B

3. Which of the following pairs has an equal number of electrons?

4. The electronic arrangement of an element ${}^{11}_{5}X(X \text{ is represented as a symbol})$ is

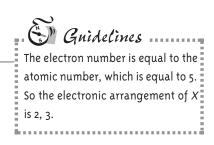
Α.	5
B.	6

- C. 2, 3
- D. 2, 5

Answer: C

Guidelines Water molecules are held by weak van der Waals' forces.

Guidelines ...


= Proton number + Neutron

Atomic number

= Proton number

= Electron number Mass number

number

Paper I Conventional Questions

Section A

1. The following table gives some information about *P*, *Q*, *R*, *S* and *T*. Which represent either atoms or ions?

Elements	Atomic number	Mass number	Number of electrons	Number of neutrons	Number of protons
Р	9	19	9		9
Q	9		10	11	
R	10		10	10	
S	17	35			
Т		37	17		17

Table 2.25

- (a) *R* is monatomic. Explain why? [Hint1]
- (b) (i) Which particle(s) is / are the ions? Hint 2
 - (ii) What is the relationship between *P* and *Q*?
 - (iii) Do particles of *P* and *Q* have the same chemical properties? Explain your answer.
- (c) (i) Suggest a term to indicate the relationship between S and T.
 - (ii) Explain why *S* and *T* have the same chemical properties.
 - (iii) (1) Hydrogen can react with *S* to form a molecule. Draw the electronic structure of this molecule. Give the formula for this molecule. Hint 3
 - (2) Calculate the relative molecular mass of the compound formed.

(11 marks)

2. The diagram below represents an anion of atom X:

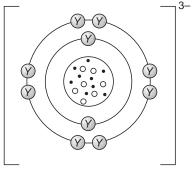


Figure 2.57