
星期

温智計劃

考卷大拆解

2012及2013年

2013 年考卷

下表列出 2013 年香港中學文憑試的題目分析,重點考題分析可在以下網頁下載: www.hkep.com/hkdse 。

		甲部	乙部
1.	地球	19	1(a), (b)
2.	微觀世界I	1, 2, 12, 23	2(c), 8
3.	金屬	5, 7, 13, 16	3(a), 7
4.	酸和鹽基	3, 8, 9, 10, 11, 22	4
5.	化石燃料和碳化合物	14, 20	3(b), 6
6.	微觀世界 II	24	1(c), 2(a), (b)
7.	氧化還原反應、化學電池和電解	4, 6, 17, 21	9, 10
8.	化學反應和能量	15, 18	5
9.	反應速率	25, 33	11
10.	化學平衡	27, 28	12
11.	碳化合物的化學	29, 30, 31, 32, 34, 35	14, 15
12.	化學世界中的規律	26, 36	13

2012 年考卷

卷一(必修部分)

		甲部	乙部
1.	地球	_	_
2.	微觀世界I	1, 8, 15	1
3.	金屬	3, 9, 16, 23	7, 9
4.	酸和鹽基	2, 4, 10, 19, 20	6
5.	化石燃料和碳化合物	11, 17, 21, 24	2, 10
6.	微觀世界 II	5, 12	4
7.	氧化還原反應、化學電池和電解	6, 13, 18, 22	3, 5
8.	化學反應和能量	7, 14	8
9.	反應速率	25	11
10.	化學平衡	26, 27, 35	13
11.	碳化合物的化學	28, 29, 32, 33, 34, 36	12, 14, 15
12.	化學世界中的規律	30, 31	16

甲部 (多項選擇題)

第17題 (Cracking)

問題考核考生對裂解實驗及所生成的產物的性質的認識。裂解作用是在隔絕空氣的情況下把較大的分子(一般為長鏈的有機分子)分裂為小分子(烷烴及烯烴)的過程,當中素瓷為催化劑。考生需明白以下幾點:

- 1. 化學反應是在素瓷 (unglazed porcelain) 表面發生的。
- 2. 玻璃棉上的煤油只是被汽化,而不是被裂解。
- 3. 烷烴 (Alkane) 及烯烴 (Alkene) 為裂解的生成物,它們是中性的。所以,不會改變管 B內的藍色石蕊溶液的顏色。
- 4. 烯烴會與酸化 $KMnO_4$ 反應,管 C 內的溶液會由紫色變成無色。 答案為 B 。

應試攻略

卷一(水修部分)

時間管理

卷一要求考生於 2 小時 30 分鐘 (即 150 分鐘) 內完成 36 道多項選擇題及 14 道問答題。由於卷一涉及的題目甚多,考生必須預先安排每題的作答時間。

建議時間分配		建議每題答題時間	
甲部	45 分鐘	1 – 1.5 分鐘	
乙部	105 分鐘	5 – 10 分鐘	

一般而言,每4分花5分鐘時間作答,並預留約5分鐘時間作覆卷用。

甲部多項選擇題的問題主要可分為三類:第一類內容較簡單,考核的化學知識也比較直接;建議每題用不多於1分鐘作答,預留時間給第二及第三類題目。第二類內容較複雜,需要考生細心閱讀題目,而且考核的化學知識也可能較偏門及容易混淆;此類建議每題用不多於約1.5分鐘作答。第三類題目為計算題;此類建議每題用約1.5至2分鐘作答。

乙部建議於 105 分鐘內完成 14 道問答題,共 84 分。由於各題佔分、資料數目和分部數目都不同,所以考生應該按各題分數多寡調節作答時間。

答題策略

卷一甲部分為兩部分,所有試題均須作答。

第一部分共 24 道多項選擇題,考核範圍為課題 1 至 5 及 7 至 8;問題形式方面,第 1 至 22 題為一般選擇題,第 23 及 24 題為判斷兩敍述句是否正確的問題。

第二部分共 12 道多項選擇題,考核範圍為課題 6 及 9 至 12;問題形式方面,第 25 至 34 題為一般選擇題,第 35 及 36 題為判斷兩敍述句是否正確的問題。

微觀世界

1.1 原子結構

元素

➤ 元素是指一種不能以化學方法分解成兩個或以上更簡單物質的物質。

原子

- ➤ 原子包括質子 (p)、中子 (n) 和電子 (e)。
- ▶ 質子、中子和電子的性質:

次原子粒子	符號	相對質量	相對電荷	在原子中的位置
質子	р	1	+1	原子核內
中子	n	1	0	原子核內
電子	е	可忽略	-1	原子核外

➤ 一個完整的原子符號可以寫成:

➤ 質子數目 = Z 中子數目 = A - Z電子數目 (在中性原子內) = Z

公開試中,給予某元素的詳盡原子符 號後,經常要以此計算質子、中子及 電子的數目。

例如:²³Na,它的質子數目為 11,中 子數目為 23-11=12, 電子數目為 11。

同位素

- ▶ 同位素是指有相同原子數,卻有不同的質量數的原子。
- ➤ 它們擁有相同的化學性質,因為它們擁有相同的電子排佈。
- ➤ 它們擁有不同的物理性質,因為它們擁有不同的質量數。

「**試題參考 GE 2006** MC Q5 **GE 2007** MC Q13 就原子中的次原子粒子數目設問 9

相對原子質量

➤ 相對原子質量 = 該元素所有同位素的相對同位素質量的加權平均數

計算元素的相對原子質量 (參考 2006 CE 卷 2, 14、2012 DSE 卷 1B, 1(b) 、 2013 DSE 卷 1A, 2)

元素 X 有三個同位素 $, {}^{28}X , {}^{29}X$ 和 ${}^{30}X$ 。下表列出該三個同位素的相對豐度 。

同位素	相對豐度
²⁸ X	92.2%
²⁹ X	4.7%
³⁰ X	3.1%

從X的相對原子質 量,可推斷 *X* 為 Si。

- (a) X的相對原子質量是多少?
- (b) 解釋可否利用化學方法分離它們。

解:

- (a) X的相對原子質量 $= 28 \times 92.2\% + 29 \times 4.7\% + 30 \times 3.1\%$ = 28.1
- (b) 不可以。 這是因為它們擁有相同的化學性質。

犯錯診斷室

- 1. 解釋為甚麼第 0 族的元素經常以單原子的形式存在。
- 因為第0族的元素非常穩定。

不能用穩定為答案。因為問題等同「為甚麼它們是穩定的?」。

- ☑ 因為第 0 族的元素皆有電子偶或八隅體結構,而這些結構令它們不會與其他原子結合。
 - 2. 某元素的同位素是否可能被分離?解釋你的答案,若答案為「可能」,建議一種分離方法。
- ※ 不可能,因為同位素的化學性質相同。

診斷手記。

雖然同位素的化學性質相同,但它們的物理性質卻有分別。

- 可能,因為不同的同位素有不同的物理性質。利用分餾,我們可以利用不同的沸點分離不同的同位素。
- 3. 碘晶體內有哪種化學鍵或吸引力?
- ※ 范德華力。

在碘晶體內,碘分子的兩個原子以共價鍵固定;而碘分子之間的吸引力為范德華力。

共價鍵及范德華力。

- 如何從質子、中子和電子決定原子的種類和性質? D.12 1.
- 你能夠寫出週期表上首 20 個元素的電子排佈嗎? p.14 2.
- 甚麼是週期表? p.15 3.
- 如何運用週期表推測元素的物理及化學性質? p.15 4.
- 離子鍵是怎樣形成的? p.16
- 共價鍵和范德華力有何不同? p.17 6.
- 不同化合物的結構和性質有何關係? p.18 7.
- 你能否從已知某物質的數個性質,來推斷出其結構? p.19
- 沿週期觀察,元素的物理性質有何改變? p.20
- 10. 價層電子對互斥理論 (VSEPR) 所指的是甚麼? p.22
- 11. 如何利用價層電子對互斥理論推測分子的形狀和鍵角? p.23
- 12. 電負性、偶極矩和永久偶極之間有甚麼關係? p.24
- 13. 甚麼是氫鍵? p.26
- 14. 石墨和富勒烯有何分别? p.27